References

[AL-CU1991]P. Alart, A. Curnier. A mixed formulation for frictional contact problems prone to newton like solution methods. Comput. Methods Appl. Mech. Engrg. 92, 353–375, 1991.
[Al-Ge1997]E.L. Allgower and K. Georg. Numerical Path Following, Handbook of Numerical Analysis, Vol. V (P.G. Ciarlet and J.L. Lions, eds.). Elsevier, pp. 3-207, 1997.
[AM-MO-RE2014]S. Amdouni, M. Moakher, Y. Renard, A local projection stabilization of fictitious domain method for elliptic boundary value problems. Appl. Numer. Math., 76:60-75, 2014.
[AM-MO-RE2014b]S. Amdouni, M. Moakher, Y. Renard. A stabilized Lagrange multiplier method for the enriched finite element approximation of Tresca contact problems of cracked elastic bodies. Comput. Methods Appl. Mech. Engrg., 270:178-200, 2014.
[bank1983]R.E. Bank, A.H. Sherman, A. Weiser. Refinement algorithms and data structures for regular local mesh refinement. In Scientific Computing IMACS, Amsterdam, North-Holland, pp 3-17, 1983.
[ba-dv1985]K.J. Bathe, E.N. Dvorkin, A four-node plate bending element based on Mindlin-Reissner plate theory and a mixed interpolation. Internat. J. Numer. Methods Engrg., 21, 367-383, 1985.
[Be-Mi-Mo-Bu2005]Bechet E, Minnebo H, Moës N, Burgardt B. Improved implementation and robustness study of the X-FEM for stress analysis around cracks. Internat. J. Numer. Methods Engrg., 64, 1033-1056, 2005.
[BE-CO-DU2010]M. Bergot, G. Cohen, M. Duruflé. Higher-order finite elements for hybrid meshes using new nodal pyramidal elements J. Sci. Comput., 42, 345-381, 2010.
[br-ba-fo1989]F. Brezzi, K.J. Bathe, M. Fortin. Mixed-interpolated element for Reissner-Mindlin plates. Internat. J. Numer. Methods Engrg., 28, 1787-1801, 1989.
[bu-ha2010]E. Burman, P. Hansbo. Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method. Computer Methods in Applied Mechanics, 199:41-44, 2680-2686, 2010.
[ca-re-so1994]D. Calvetti, L. Reichel and D.C. Sorensen. An implicitely restarted Lanczos method for large symmetric eigenvalue problems. Electronic Transaction on Numerical Analysis}. 2:1-21, 1994.
[CH-LA-RE2008]E. Chahine, P. Laborde, Y. Renard. Crack-tip enrichment in the Xfem method using a cut-off function. Int. J. Numer. Meth. Engng., 75(6):629-646, 2008.
[CH-LA-RE2011]E. Chahine, P. Laborde, Y. Renard. A non-conformal eXtended Finite Element approach: Integral matching Xfem. Applied Numerical Mathematics, 61:322-343, 2011.
[ciarlet1978]P.G. Ciarlet. The finite element method for elliptic problems. Studies in Mathematics and its Applications vol. 4, North-Holland, 1978.
[ciarlet1988]P.G. Ciarlet. Mathematical Elasticity. Volume 1: Three-Dimensional Elasticity. North-Holland, 1988.
[EncyclopCubature]R. Cools, An Encyclopedia of Cubature Formulas, J. Complexity.
[dh-to1984]G. Dhatt, G. Touzot. The Finite Element Method Displayed. J. Wiley & Sons, New York, 1984.
[Dh-Go-Ku2003]A. Dhooge, W. Govaerts and Y. A. Kuznetsov. MATCONT: A MATLAB Package for Numerical Bifurcation Analysis of ODEs. ACM Trans. Math. Software 31, 141-164, 2003.
[Duan2014]H. Duan. A finite element method for Reissner-Mindlin plates. Math. Comp., 83:286, 701-733, 2014.
[Dr-La-Ek2014]A. Draganis, F. Larsson, A. Ekberg. Finite element analysis of transient thermomechanical rolling contact using an efficient arbitrary Lagrangian-Eulerian description. Comput. Mech., 54, 389-405, 2014.
[Fa-Po-Re2015]M. Fabre, J. Pousin, Y. Renard. A fictitious domain method for frictionless contact problems in elasticity using Nitsche’s method. preprint, https://hal.archives-ouvertes.fr/hal-00960996v1
[Fa-Pa2003]F. Facchinei and J.-S. Pang. Finite-Dimensional Variational Inequalities and Complementarity Problems, Vol. II. Springer Series in Operations Research, Springer, New York, 2003.
[Georg2001]K. Georg. Matrix-free numerical continuation and bifurcation. Numer. Funct. Anal. Optimization 22, 303-320, 2001.
[GR-GH1999]R.D. Graglia, I.-L. Gheorma. Higher order interpolatory vector bases on pyramidal elements IEEE transactions on antennas and propagation, 47:5, 775-782, 1999.
[GR-ST2015]D. Grandi, U. Stefanelli. The Souza-Auricchio model for shape-memory alloys Discrete and Continuous Dynamical Systems, Series S, 8(4):723-747, 2015.
[HA-WO2009]C. Hager, B.I. Wohlmuth. Nonlinear complementarity functions for plasticity problems with frictional contact. Comput. Methods Appl. Mech. Engrg., 198:3411-3427, 2009
[HA-HA2004]A Hansbo, P Hansbo. A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput. Methods Appl. Mech. Engrg. 193 (33-35), 3523-3540, 2004.
[HA-RE2009]J. Haslinger, Y. Renard. A new fictitious domain approach inspired by the extended finite element method. Siam J. on Numer. Anal., 47(2):1474-1499, 2009.
[HI-RE2010]Hild P., Renard Y. Stabilized lagrange multiplier method for the finite element approximation of contact problems in elastostatics. Numer. Math. 15:1, 101–129, 2010.
[KH-PO-RE2006]Khenous H., Pommier J., Renard Y. Hybrid discretization of the Signorini problem with Coulomb friction, theoretical aspects and comparison of some numerical solvers. Applied Numerical Mathematics, 56/2:163-192, 2006.
[KI-OD1988]N. Kikuchi, J.T. Oden. Contact problems in elasticity. SIAM, 1988.
[LA-PO-RE-SA2005]Laborde P., Pommier J., Renard Y., Salaun M. High order extended finite element method for cracked domains. Int. J. Numer. Meth. Engng., 64:354-381, 2005.
[LA-RE-SA2010]J. Lasry, Y. Renard, M. Salaun. eXtended Finite Element Method for thin cracked plates with Kirchhoff-Love theory. Int. J. Numer. Meth. Engng., 84(9):1115-1138, 2010.
[KO-RE2014]K. Poulios, Y. Renard, An unconstrained integral approximation of large sliding frictional contact between deformable solids. Computers and Structures, 153:75-90, 2015.
[LA-RE2006]P. Laborde, Y. Renard. Fixed point strategies for elastostatic frictional contact problems. Math. Meth. Appl. Sci., 31:415-441, 2008.
[Li-Re2014]T. Ligurský and Y. Renard. A Continuation Problem for Computing Solutions of Discretised Evolution Problems with Application to Plane Quasi-Static Contact Problems with Friction. Comput. Methods Appl. Mech. Engrg. 280, 222-262, 2014.
[Li-Re2014hal]T. Ligurský and Y. Renard. Bifurcations in Piecewise-Smooth Steady-State Problems: Abstract Study and Application to Plane Contact Problems with Friction. Computational Mechanics, 56:1:39-62, 2015.
[Li-Re2015hal]T. Ligurský and Y. Renard. A Method of Piecewise-Smooth Numerical Branching. Submitted (2015). <hal-01113564>
[Mi-Zh2002]P. Ming and Z. Shi, Optimal L2 error bounds for MITC3 type element. Numer. Math. 91, 77-91, 2002.
[Xfem]N. Moës, J. Dolbow and T. Belytschko, A finite element method for crack growth without remeshing. Internat. J. Numer. Methods Engrg., 46, 131-150, 1999.
[Nackenhorst2004]U. Nackenhorst, The ALE formulation of bodies in rolling contact. Theoretical foundation and finite element approach. Comput. Methods Appl. Mech. Engrg., 193:4299-4322, 2004.
[nedelec1991]J.-C. Nedelec. Notions sur les techniques d’elements finis. Ellipses, SMAI, Mathematiques & Applications no 7, 1991.
[NI-RE-CH2011]S. Nicaise, Y. Renard, E. Chahine, Optimal convergence analysis for the eXtended Finite Element Method. Int. J. Numer. Meth. Engng., 86:528-548, 2011.
[Pantz2008]O. Pantz The Modeling of Deformable Bodies with Frictionless (Self-)Contacts. Archive for Rational Mechanics and Analysis, Volume 188, Issue 2, pp 183-212, 2008.
[SCHADD]L.F. Pavarino. Domain decomposition algorithms for the p-version finite element method for elliptic problems. Luca F. Pavarino. PhD thesis, Courant Institute of Mathematical Sciences}. 1992.
[PO-NI2016]K. Poulios, C.F. Niordson, Homogenization of long fiber reinforced composites including fiber bending effects. Journal of the Mechanics and Physics od Solids, 94, pp 433-452, 2016.
[remacle2002]J-F. Remacle, M. Shephard, An algorithm oriented database. Internat. J. Numer. Methods Engrg., 58, 349-374, 2003.
[SE-PO-WO2015]A. Seitz, A. Popp, W.A. Wall, A semi-smooth Newton method for orthotropic plasticity and frictional contact at finite strains. Comput. Methods Appl. Mech. Engrg. 285:228-254, 2015.
[SI-HU1998]J.C. Simo, T.J.R. Hughes. Computational Inelasticity. Interdisciplinary Applied Mathematics, vol 7, Springer, New York 1998.
[so-se-do2004]P. Šolín, K. Segeth, I. Doležel, Higher-Order Finite Element Methods. Chapman and Hall/CRC, Studies in advanced mathematics, 2004.
[SO-PE-OW2008]E.A. de Souza Neto, D Perić, D.R.J. Owen. Computational methods for plasticity. J. Wiley & Sons, New York, 2008.
[renard2013]Y. Renard, Generalized Newton’s methods for the approximation and resolution of frictional contact problems in elasticity. Comput. Methods Appl. Mech. Engrg., 256:38-55, 2013.
[SU-CH-MO-BE2001]Sukumar N., Chopp D.L., Moës N., Belytschko T. Modeling holes and inclusions by level sets in the extended finite-element method. Comput. Methods Appl. Mech. Engrg., 190:46-47, 2001.
[ZT1989]Zienkiewicz and Taylor. The finite element method. 5th edition, volume 3 : Fluids Dynamics.

Previous topic

Appendix A. Some basic computations between reference and real elements

Next topic

Gmm++ Library

Download

Download GetFEM++

Main documentations

Other resources