class Integ(*args)

GeFEM Integ object

General object for obtaining handles to various integrations methods on convexes (used when the elementary matrices are built).

General constructor for Integ objects

  • I = Integ(string method) Here is a list of some integration methods defined in getfem++ (see the description of finite element and integration methods for a complete reference):

    • IM_EXACT_SIMPLEX(n) : Exact integration on simplices (works only with linear geometric transformations and PK Fem’s).
    • IM_PRODUCT(A,B) : Product of two integration methods.
    • IM_EXACT_PARALLELEPIPED(n) : Exact integration on parallelepipeds.
    • IM_EXACT_PRISM(n) : Exact integration on prisms.
    • IM_GAUSS1D(k) : Gauss method on the segment, order k=1,3,...,99.
    • IM_NC(n,k) : Newton-Cotes approximative integration on simplexes, order k.
    • IM_NC_PARALLELEPIPED(n,k) : Product of Newton-Cotes integration on parallelepipeds.
    • IM_NC_PRISM(n,k) : Product of Newton-Cotes integration on prisms.
    • IM_GAUSS_PARALLELEPIPED(n,k) : Product of Gauss1D integration on parallelepipeds.
    • IM_TRIANGLE(k) : Gauss methods on triangles k=1,3,5,6,7,8,9,10,13,17,19.
    • IM_QUAD(k) : Gauss methods on quadrilaterons k=2,3,5, ...,17. Note that IM_GAUSS_PARALLELEPIPED should be prefered for QK Fem’s.
    • IM_TETRAHEDRON(k) : Gauss methods on tetrahedrons k=1,2,3,5,6 or 8.
    • IM_SIMPLEX4D(3) : Gauss method on a 4-dimensional simplex.
    • l ci sim>
    • IM_TETRAHHSM(ITE(iTRUCT"h IM_GAUSS_PARnation on parsuPARdis defe HSMete rS_PARn element and i
    • IM_
      • IM_EXAC = objec(;s.IM_
        istgmentnte as
        • IM_EXAC = objec(;s.IM_
          hat IM_GA ;s.tgmey ith limah ls d geometric trans ormations and P,uilt)quPAR slow,K Fe sufor obs dnraprlign="vabil">yredob ana comph> ed gr de217;s.
        • IM_ Integ(*ar/big>

          GeFEM Oupuint whnique) GeneraTfinicss=ferhen ts dete r insite>betwe eleegrdife): < Integ(*ar/big>

          GeFEM Returnstgmentoefficihref associaARdis deachnation methodpoi i ! Integ(*ar/big>

          GeFEM Returntgmenional simnitegmennce):

          es (usnit gmens.GenelGeFE/d Integ(*ar/big>

          GeFEM iosplayst out icrsummtriccompleobjects

          GenelGeFE/d &_toeffs id=ss="descname">Integ &_toeffsbig>(*args) &_toeffs ="Permalink to this definition">¶

          GeFEM Returnstgmentoefficihref associaARdis deachnation methoditea a> & ! &_pts id=ss="descname">Integ &_ptsbig>(*args) &_pts ="Permalink to this definition">¶

          GeFEM Returntgmenf some iation methodpoi ia complea> & ! Integ(*ar/big>

          GeFEM Returnt0 itegmenation methodist nplmative inRnone

          GenelGeFE/d Integ(*ar/big>

          GeFEM Returntgmentotgn=nrabte>e iation methodpoi ia &ration on paralleachna> &ritegmennce):

          es (us ! Integ(*ar/big>

          GeFEM Returntgmenf some iation methodpoi ia! lG

        • ass="sectionphinxsidgba
          ss="first"logo"ef="../index.html">GetFEMdiv clc="."first"logo"../_static/icon.plogo_.Integ_s tolalt="" Logo" 4>Ps |is pic ss="first"s pledt if="cmdref_GlobalFunction.html" title style========"Permalus |et=upt Function.html"dt> 4>Nextis pic ss="first"s pledt if="cmdref_Globalet.html" title style========"Permala> |et=upt et.html"dt> ======vpef="../>GetFEMDownloadM++ GetFEM++ & Uenrmntwrappe and li>
        • GetFEM face &raqu ======vhref="../index. inlab.html">GetFEMMinlabface &raqu ======vhref="../index.scilab.html">GetFEMScilabface &raqu ======vhref="../index.gmm.html">GetFEM Gmm &raqu ======vhref="../index.ts/getf.html">GetFEM G+ & ts/getfli>
        • ======v
        • GetFEMR"> o thsraqu ======vhref="../ind//" Hos by Sh.nongn li>
        • ==_ Quick search
        >ght" hrefraquo2004-2017 G+ & ts/getf./div>