Model

class Model(*args)

GeFEM Model object

Model variables store the variables and the state data and the description of a model. This includes the global tangent matrix, the right hand side and the constraints. There are two kinds of models, the real and the complex models.

General constructor for Model objects

  • MD = Model('real') Build a model for real unknowns.
  • MD = Model('complex') Build a model for complex unknowns.
Neumann_term(varname, region)

Gives the assembly string corresponding to the Neumann term of the fem variable varname on region. It is deduced from the assembly string declared by the model bricks. region should be the index of a boundary region on the mesh where varname is defined. Care to call this function only after all the volumic bricks have been declared. Complains, if a brick omit to declare an assembly string.

add_Dirichlet_condition_with_Nitsche_method(mim, varname, Neumannterm, datagamma0, region, theta=None, *args)

Synopsis: ind = Model.add_Dirichlet_condition_with_Nitsche_method(self, MeshIm mim, string varname, string Neumannterm, string datagamma0, int region[, scalar theta][, string dataname])

Add a Dirichlet condition on the variable varname and the mesh region region. This region should be a boundary. Neumannterm is the expression of the Neumann term (obtained by the Green formula) described as an expression of the high-level generic assembly language. This term can be obtained by Model.Neumann_term(varname, region) once all volumic bricks have been added to the model. The Dirichlet condition is prescribed with Nitsche’s method. datag is the optional right hand side of the Dirichlet condition. datagamma0 is the Nitsche’s method parameter. theta is a scalar value which can be positive or negative. theta = 1 corresponds to the standard symmetric method which is conditionnaly coercive for gamma0 small. theta = -1 corresponds to the skew-symmetric method which is inconditionnaly coercive. theta = 0 (default) is the simplest method for which the second derivative of the Neumann term is not necessary even for nonlinear problems. Return the brick index in the model.

add_Dirichlet_condition_with_multipliers(mim, varname, mult_description, region, dataname=None)

Add a Dirichlet condition on the variable varname and the mesh region region. This region should be a boundary. The Dirichlet condition is prescribed with a multiplier variable described by mult_description. If mult_description is a string this is assumed to be the variable name corresponding to the multiplier (which should be first declared as a multiplier variable on the mesh region in the model). If it is a finite element method (mesh_fem object) then a multiplier variable will be added to the model and build on this finite element method (it will be restricted to the mesh region region and eventually some conflicting dofs with some other multiplier variables will be suppressed). If it is an integer, then a multiplier variable will be added to the model and build on a classical finite element of degree that integer. dataname is the optional right hand side of the Dirichlet condition. It could be constant or described on a fem; scalar or vector valued, depending on the variable on which the Dirichlet condition is prescribed. Return the brick index in the model.

add_Dirichlet_condition_with_penalization(mim, varname, coeff, region, dataname=None, mf_mult=None)

Add a Dirichlet condition on the variable varname and the mesh region region. This region should be a boundary. The Dirichlet condition is prescribed with penalization. The penalization coefficient is initially coeff and will be added to the data of the model. dataname is the optional right hand side of the Dirichlet condition. It could be constant or described on a fem; scalar or vector valued, depending on the variable on which the Dirichlet condition is prescribed. mf_mult is an optional parameter which allows to weaken the Dirichlet condition specifying a multiplier space. Return the brick index in the model.

add_Dirichlet_condition_with_simplification(varname, region, dataname=None)

Adds a (simple) Dirichlet condition on the variable varname and the mesh region region. The Dirichlet condition is prescribed by a simple post-treatment of the final linear system (tangent system for nonlinear problems) consisting of modifying the lines corresponding to the degree of freedom of the variable on region (0 outside the diagonal, 1 on the diagonal of the matrix and the expected value on the right hand side). The symmetry of the linear system is kept if all other bricks are symmetric. This brick is to be reserved for simple Dirichlet conditions (only dof declared on the correspodning boundary are prescribed). The application of this brick on reduced dof may be problematic. Intrinsic vectorial finite element method are not supported. dataname is the optional right hand side of the Dirichlet condition. It could be constant (but in that case, it can only be applied to Lagrange f.e.m.) or (important) described on the same finite element method as varname. Returns the brick index in the model.

add_Fourier_Robin_brick(mim, varname, dataexpr, region)

Add a Fourier-Robin term to the model relatively to the variable varname. This corresponds to a weak term of the form \int (qu).v. dataexpr is the parameter q of the Fourier-Robin condition. It can be an arbitrary valid expression of the high-level generic assembly language (except for the complex version for which it should be a data of the model). region is the mesh region on which the term is added. Return the brick index in the model.

add_Helmholtz_brick(mim, varname, dataexpr, region=None)

Add a Helmholtz term to the model relatively to the variable varname. dataexpr is the wave number. region is an optional mesh region on which the term is added. If it is not specified, it is added on the whole mesh. Return the brick index in the model.

add_Kirchhoff_Love_Neumann_term_brick(mim, varname, dataname_M, dataname_divM, region)

Add a Neumann term brick for Kirchhoff-Love model on the variable varname and the mesh region region. dataname_M represents the bending moment tensor and dataname_divM its divergence. Return the brick index in the model.

add_Kirchhoff_Love_plate_brick(mim, varname, dataname_D, dataname_nu, region=None)

Add a bilaplacian brick on the variable varname and on the mesh region region. This represent a term \Delta(D \Delta u) where D(x) is a the flexion modulus determined by dataname_D. The term is integrated by part following a Kirchhoff-Love plate model with dataname_nu the poisson ratio. Return the brick index in the model.

add_Laplacian_brick(mim, varname, region=None)

Add a Laplacian term to the model relatively to the variable varname (in fact with a minus : -\text{div}(\nabla u)). If this is a vector valued variable, the Laplacian term is added componentwise. region is an optional mesh region on which the term is added. If it is not specified, it is added on the whole mesh. Return the brick index in the model.

add_Mindlin_Reissner_plate_brick(mim, mim_reduced, varname_u3, varname_theta, param_E, param_nu, param_epsilon, param_kappa, variant=None, *args)

Synopsis: ind = Model.add_Mindlin_Reissner_plate_brick(self, MeshIm mim, MeshIm mim_reduced, string varname_u3, string varname_theta , string param_E, string param_nu, string param_epsilon, string param_kappa [,int variant [, int region]])

Add a term corresponding to the classical Reissner-Mindlin plate model for which varname_u3 is the transverse displacement, varname_theta the rotation of fibers normal to the midplane, ‘param_E’ the Young Modulus, param_nu the poisson ratio, param_epsilon the plate thickness, param_kappa the shear correction factor. Note that since this brick uses the high level generic assembly language, the parameter can be regular expression of this language. There are three variants. variant = 0 corresponds to the an unreduced formulation and in that case only the integration method mim is used. Practically this variant is not usable since it is subject to a strong locking phenomenon. variant = 1 corresponds to a reduced integration where mim is used for the rotation term and mim_reduced for the transverse shear term. variant = 2 (default) corresponds to the projection onto a rotated RT0 element of the transverse shear term. For the moment, this is adapted to quadrilateral only (because it is not sufficient to remove the locking phenomenon on triangle elements). Note also that if you use high order elements, the projection on RT0 will reduce the order of the approximation. Returns the brick index in the model.

add_Newmark_scheme(varname, beta, gamma)

Attach a theta method for the time discretization of the variable varname. Valid only if there is at most second order time derivative of the variable.

add_Nitsche_contact_with_rigid_obstacle_brick(mim, varname, Neumannterm, dataname_obstacle, gamma0name, region, theta=None, *args)

Synopsis: ind = Model.add_Nitsche_contact_with_rigid_obstacle_brick(self, MeshIm mim, string varname, string Neumannterm, string dataname_obstacle, string gamma0name, int region[, scalar theta[, string dataname_friction_coeff[, string dataname_alpha, string dataname_wt]]])

Adds a contact condition with or without Coulomb friction on the variable varname and the mesh boundary region. The contact condition is prescribed with Nitsche’s method. The rigid obstacle should be described with the data dataname_obstacle being a signed distance to the obstacle (interpolated on a finite element method). gamma0name is the Nitsche’s method parameter. theta is a scalar value which can be positive or negative. theta = 1 corresponds to the standard symmetric method which is conditionnaly coercive for gamma0 small. theta = -1 corresponds to the skew-symmetric method which is inconditionnaly coercive. theta = 0 is the simplest method for which the second derivative of the Neumann term is not necessary. The optional parameter dataname_friction_coeff is the friction coefficient which could be constant or defined on a finite element method. CAUTION: This brick has to be added in the model after all the bricks corresponding to partial differential terms having a Neumann term. Moreover, This brick can only be applied to bricks declaring their Neumann terms. Returns the brick index in the model.

add_Nitsche_fictitious_domain_contact_brick(mim, varname1, varname2, dataname_d1, dataname_d2, gamma0name, theta=None, *args)

Synopsis: ind = Model.add_Nitsche_fictitious_domain_contact_brick(self, MeshIm mim, string varname1, string varname2, string dataname_d1, string dataname_d2, string gamma0name [, scalar theta[, string dataname_friction_coeff[, string dataname_alpha, string dataname_wt1,string dataname_wt2]]])

Adds a contact condition with or without Coulomb friction between two bodies in a fictitious domain. The contact condition is applied on the variable varname_u1 corresponds with the first and slave body with Nitsche’s method and on the variable varname_u2 corresponds with the second and master body with Nitsche’s method. The contact condition is evaluated on the fictitious slave boundary. The first body should be described by the level-set dataname_d1 and the second body should be described by the level-set dataname_d2. gamma0name is the Nitsche’s method parameter. theta is a scalar value which can be positive or negative. theta = 1 corresponds to the standard symmetric method which is conditionnaly coercive for gamma0 small. theta = -1 corresponds to the skew-symmetric method which is inconditionnaly coercive. theta = 0 is the simplest method for which the second derivative of the Neumann term is not necessary. The optional parameter dataname_friction_coeff is the friction coefficient which could be constant or defined on a finite element method. CAUTION: This brick has to be added in the model after all the bricks corresponding to partial differential terms having a Neumann term. Moreover, This brick can only be applied to bricks declaring their Neumann terms. Returns the brick index in the model.

add_Nitsche_large_sliding_contact_brick_raytracing(unbiased_version, dataname_r, release_distance, dataname_fr=None, *args)

Synopsis: ind = Model.add_Nitsche_large_sliding_contact_brick_raytracing(self, bool unbiased_version, string dataname_r, scalar release_distance[, string dataname_fr[, string dataname_alpha[, int version]]])

Adds a large sliding contact with friction brick to the model based on the Nitsche’s method. This brick is able to deal with self-contact, contact between several deformable bodies and contact with rigid obstacles. It uses the high-level generic assembly. It adds to the model a raytracing_interpolate_transformation object. “unbiased_version” refers to the version of Nische’s method to be used. (unbiased or biased one). For each slave boundary a material law should be defined as a function of the dispacement variable on this boundary. The release distance should be determined with care (generally a few times a mean element size, and less than the thickness of the body). Initially, the brick is added with no contact boundaries. The contact boundaries and rigid bodies are added with special functions. version is 0 (the default value) for the non-symmetric version and 1 for the more symmetric one (not fully symmetric even without friction).

add_Nitsche_midpoint_contact_with_rigid_obstacle_brick(mim, varname, Neumannterm, Neumannterm_wt, dataname_obstacle, gamma0name, region, theta, dataname_friction_coeff, dataname_alpha, dataname_wt)

EXPERIMENTAL BRICK: for midpoint scheme only !! Adds a contact condition with or without Coulomb friction on the variable varname and the mesh boundary region. The contact condition is prescribed with Nitsche’s method. The rigid obstacle should be described with the data dataname_obstacle being a signed distance to the obstacle (interpolated on a finite element method). gamma0name is the Nitsche’s method parameter. theta is a scalar value which can be positive or negative. theta = 1 corresponds to the standard symmetric method which is conditionnaly coercive for gamma0 small. theta = -1 corresponds to the skew-symmetric method which is inconditionnaly coercive. theta = 0 is the simplest method for which the second derivative of the Neumann term is not necessary. The optional parameter dataname_friction_coeff is the friction coefficient which could be constant or defined on a finite element method. Returns the brick index in the model.

add_assembly_assignment(dataname, expression, region=None, *args)

Synopsis: Model.add_assembly_assignment(self, string dataname, string expression[, int region[, int order[, int before]]])

Adds expression expr to be evaluated at assembly time and being assigned to the data dataname which has to be of im_data type. This allows for instance to store a sub-expression of an assembly computation to be used on an other assembly. It can be used for instance to store the plastic strain in plasticity models. order represents the order of assembly where this assignement has to be done (potential(0), weak form(1) or tangent system(2) or at each order(-1)). The default value is 1. If before = 1, the the assignement is perfromed before the computation of the other assembly terms, such that the data can be used in the remaining of the assembly as an intermediary result (be careful that it is still considered as a data, no derivation of the expression is performed for the tangent system). If before = 0 (default), the assignement is done after the assembly terms.

add_basic_contact_brick(varname_u, multname_n, multname_t=None, *args)

Synopsis: ind = Model.add_basic_contact_brick(self, string varname_u, string multname_n[, string multname_t], string dataname_r, Spmat BN[, Spmat BT, string dataname_friction_coeff][, string dataname_gap[, string dataname_alpha[, int veaupygmetheta = 0(

Adds a large 2) orUl parame" styl e model as modifying thregionunr term. Fbal tangenes in a fic,nditiooutsid storeBNplastic this ore a re the compurespon tangenes ifrictionprese varname (in fact with a 61fde00fd044201671f74ac358minu5b234ba3ges/math/94bB_NrUl\cle021beba6e5c34b7a2.png" alt=3png" alAeter dK: for mof the ntermediarybyies.ms) chbe regulthe Neumat) descrf, string plastic,d storeBTt Coulomb frn term is not necessary. The optiona2) ined aset cono derivatiomodel ich es ise varname (in fact with a 9353b525a768cd19e1233a61c4ae7e83791d598es/math/94bB_T U21beba6e5c34b7a2.png" alt=3png" t conditiooutsid storeBTt Coulomvariablthis reeth th/citnt) descrBNplastic to weakeonprese varname (in fact with a6a9f2f9u5b6ad9c226b9ad118c60d88d4a8b6bd3es/math/94bd-121beba6e5c34b7a2.png" alt=1t="\Delta(D \Delta u)" style="vertical-align: -4px"96ab646de7704969b91c76a214126b45f2b07b25es/math/94bd21beba6e5c34b7a2.png" alt0t="\De parameomb frel itesptionained aset ce loc,nn term is not necessary. The optional pa for thite>restrain in re = 1ataname_frmodifessarymbly computaaion. It couu)" stylestrain in with on the method and the mesh bou exTionunr term. Fbal tangenes iy rend bem.Mod a finite ele descrf, stringnme and beiodispaitespti variable oequvarname_thrnamedK: for mhe thick which thould be a bounda to weaken descrf, string plasticbeiodispaitespti variable oequvarname_thrname< modh/citofd storeBTt Couloed on ting da that the Neumann termrt Coulomvariablhe niodian bigh-lut iof raquptabeent sys

e cha modothrico"/> aetric nn term is not nrinlacian term i ative of the Neumanstrain in wittan unze, a rinmbly computaaioificient sy couu)" styleofdnt sy nn term is not n dacian term is added cohomoyle=d>

A the Neumana, no deting da that the Neuma

e cha modothrico"/> aetric nchlet he Neumann termring dataname_gapoptional K: ctersno deting da that tantegy :default valversionuntheta = -1

add_b_brick(((BN1(BNbig>mim, , multname_n, multname_t=None, *args)
_two_deal with _ct bou

Synopsis: ind = Moden_contact_brick(s#82l.add_basic_contactarname_u, string multname_n[,1ltname_n[,2t BN[, Spmat BT, string dataname_friction_coeff][, string dataname_gapa = 0(done after a modelssembl/bregionunr term. Fbal tangenes in a fic,nditiooutscet) descrBN1t Coulomb frn termBNbigastic this ore a re the compuresponsh boundarfrictionpre$B_{N1} U_1 B_{N2} U_2 + cierin$/cite> an tangenes iy reerallk Mod a finite ele descrf, stringnme and beiodispaitespti variable oequvarname_thrnamee cha modothrico"/> aetric nn term is not nrinlacian term i ative of the Neumanstrain in wittan unze, a rinmbly computaaioificient sy couu)" styleofdnt sy nn term is not n dacian term is added cohomoyle=d>

A the Neumana, no deting da that the Neuma

e cha modothrico"/> aetric nhlet he Neumann termrin_ bodies are addeK: cters o deting da that tantegy :default valversionthe a = -1

add_Kirchhoff_Love_plate_brick((mim, varname, region=None)k to this "methodf="#getfem.Model.add_Kirchhoff_Love_plate_brick" title="Permalink to this definition">¶

Add a bilaplacian brick on the variable varname and on the mesh region region. This represent a term \D.
lta(D \Delta u) where is a me and being right hand side of the Dirichlet con thatcite> ato be added this ass s ise varname (in fact with a 69464e75e59e5a1e16eabc2a3221bdc97acd76ces/math/38363589040eee22b8cd40e1ee22b8cv40e1dx6bb600ade9f4c7e60ffb4b392e.png" awith dataname_nu the poisson ratio. Return the brick index in the model.

add_Newmaf, strin(Bu, multname_n, multname_t=None, *args)
( an tangened a Neumann term brick for Kirchhoff-d bem.Mo ws to weaken descrf, strinrchhoff-ptle="Mlyh_fem object) then a(ge (except ffixed withumann ter)/cite> an tangenes ise varname (in fact with a4a8feb"..c8eb93erm a9ac048a3ffd66ff91301es/math/94bBU=L21beba6e5c34b7a2.png" alt0t="\Dd by part foB described with hickhe p It s hestiooutsiable dataname_nu the poisson ratio. Return the brick index in the model.

add_Newmaion, thBu, multname_n, multname_t=None, *args) Synopsis: ind = Mol.an. It ion(ref="#ged> an tangened a Neumann term brick for Kirchhoff. ite> an tangenes i:ith `BU=L` by part foB described with hickhe p It s hestiooutsia Bpt wn be ratpart foB describge (excch tENTAL b ghprichdh/c,ement vara Neuded. escription of coefficir allable datana e_nu the poisson ratio. Return the brick index in the model.

the var_to_acing_intn">¶

Synopsis: ind.Model.add_Dirichlet_conditi an the var_to_acing_intn">¶

Synopsis: indscheme"> add_Newmalambdg>(w>(mim, varname, region=None) the var_to_acing_intn">¶

Synopsis: ind.del.add_Dirichlet_condition_with_simplification" title="Permalin brick is addedd>

rm (otem (tae versionn">¶

Ae> corresbmenrname_u2te>varnamisson ratio. Return the brick index in the model.

t id="getfem.Model.add_Nitsche_midpoint_contact_with_ick"> add_Nitsche_midpoint_contact_with_rigid_obstacle_basic_contact_brick(varname_u, multname_n, multname_t=None, *args) (escname">add_Newmaprtle="M_dep_late_brick(mim, varname, region=None
vfcouu)quastemtion) once ap al>( andsigma_b on a finite mann termstrain in wittan 1n tangensn brick osed or eprtle="M_dep_late_bastic strain in plastl ich ecomputaprtle="Mon re brick for Kirchhoff-rchhocite>renerm isKticityta r the mofframe/cite> andsigma_b on a -systhis ore a comhe dn disK-1ticityta r the moe andlambdg_bCoulomb frn term is m;param_E&n be rmeLam = 1ataname_f a mean estud on osed or e (0 oud or eagrange f.et which could be ble, the Laplacian term is added componentwise. region is an ptional mesh region on which the term is added. If it with dataname_nu the poisson ratio. Return the brick index in the model.

beimma0. It adds to ttsche_midpoint_contact_with_eehich _extan> beimma0. It adds to ttsche_midpoint_contac. It >(wource_o itassembly_asslderlrr>mim, varname, region=None) beimma0. It adds to ttf="#getfem.Model.add_Kirchhoff_Love_plate_brick" title="Permalitact bou/cite> beithat It adds to thite>restrain in ttan ud in td c It adds to th thee>mf_mult<

is still considxpresment i which crally a curer at which c beimmaable c It adds to thibed by the lev thett of ttactnly ielements. regionextan> beimmaassigned tomm>, optiaetermined l mesh ltemionnt slderlregione/p> (, varname, region=None) add_NewmaLname_n, multname_t=None, *args)dataname_nu the poisson ratio. Return the brick index in the model.

(mf_brickwithsmim, varname, region=None) (mf_bricmim, varname, region=None)add_Newmaphe Ns_brick(mim, varname, region=None

Add mann term brick for Kirchhoff. bricklawolated on a finite nd siitut> . The of fibee> the roMobigy Riv thof fibee> the roNeo Hookeahof fibee the roCiarle sGeymed tof fibercou the roGlease #ged>B/dtz Koof fibee< the roMobigy Riv thof fibeite> the roNeo Hookeahof fibebiaseolatssthis ore a raicee. The cons addor> the roComll conterof fibercou the roIncomll conterof fiberoreforce ot wittanas to be added ame_gap. ite> amll conterct. “utansdataname_f.0(paramsplastices iu)" styleofdthe Neumat). chli>lastolat mode versrepe

Ador valued a mean einojecti mean eembly. Inal o Cauchy-Gr isddatanamcomputaprtle="Mon ch/ulg>(fa raytrSimo_Mient met21; iasemesoeexactnitnt) descrparamsplasticeAbgely0;utan taname_D(uthe brickionnaltschli>hnoexel consid. chli>hnoexel consid. chli>lastolat mode othriel r each sboundary ratpdeDirics o dey oldtlimitslave boundary a matehardenact_bri>(bmenro dey oldtlimitslbed by hardenact_bri> a me projpi>ch/ulg>(region is an ptional mesh region on which the term is added. If it with dataname_nu the poisson ratio. Return the brick index in the model.

add_Kirchhoff_Love_plate_brickf, stringll cour _brick(mim, varname, region=None)>var"ann termn a finites 0region is an optional mesh region on which the term is a ded. If it ith dataname_nu the poio the model basdquint to quaframe/e_midpoint_a modeltlierm. "> of the f incomll contild_n dd_Ni csp i> clash th ble bodies and contact with rigid obies.ms)egionp*(1-Det(Id(f itdim)+Grad_u)) csp i> clashcfrne_midpoint_a modeltlierm. ">p csp i> clashc bodie to weaken ibe ne_midpoint_a modeltlierm. ">u csp i> clashhe smann termeing and on the an l ich isson ratio. Return the brick index in the model.

(mim, dataname_obstacle, gammamim, varname, region=None)ralin brsh boun@f$ Hu = ou t64;f$ lta(D \ame (0 outsidHmvariablthis llheiglent sys equvarnam1tic 0ion of tgpti variable oas a functi ad store(< term s iis still considximplest method for (obAL b 1
Gr isdiant = ) he Dirichllavendtill considximpless and cont ct with rigid obilhe page.ferent for of the obAL b 1region. The contact condi descrfinite element methct) added c nal of the matrsds to tDiithhledRICK: for ablei right hand side of he Dirichlet conem nn terminterpolated on a finite aname_d2. gamma0name is the Nitsche’s method parameter. theta is a scalar value which can be positive or negative. theta = 1 corresponds to the standard symmetric method which is conditionnaly coercive for gamma0 small. theta = -1 corresponds to the skew-symmetric method which is inconditionnaly coercive. theta = 0 is the simplest method for which the second for t. (0 outsidn oldt\ame add_Kirchhoff_Love_plate_brickf, s_he Dirpti((H>(, varname, region=None)ralin brsh bouise varname (in fact with aa334eafass=5c12626424244a2fb439a21d01884es/math/94bHu = o21beba6e5c34b7a2.png" alt0t="\Dd ta(D \ameregionume1 finiteite (0 to weaken (ite>thvariable evaluaeover,ary resu to weaken mann term brick on the varia finite elem) ptional mconed dof may be problem(r the mohe mode)initnd a finite elemann termeoeffici_fem object) then ate>exuildefined asficient which could b (itoeoefficio b>thetm object) tn the variable varnameefor tu cth so e s nflthouame_ofsct betso e ment i to weaken mann tersoeoeffic duppl coio) optional mcan be gdifframnunbiato weaken mann termeoeffic _fem object) then ate>exuildefin>varnam7a2.oned dof may be e model a assembe gdidi descrfinite element methct) nal of the matrsds nite DiithhledRICK: for ablei right hand side of the Dirichlet conem;o217;s regionDiithhledsponds to sdary remmetric Holated on a finite or tas to be added in > (0 outsidn oldt\ame add_Kirchhoff_Love_plate_brickion, thbig>(H>(mfpt id gammamim, varname, region=None)ralin brsh bouise varname (in fact with aa334eafass=5c12626424244a2fb439a21d01884es/math/94bHu = o21beba6e5c34b7a2.png" alt0t="\Dd ta(D \ameregionregionDiithhled ponds to sdary rem etric Holated on a finite or tas to be added in > (0 outsidn oldt\ame core>mf_mult< thiisddam DiithhledRICK: for regiony with ato weaken al la with dataname_nu the poisson ratio. Return the brick index in the model.

add_Kirchhoff_Love_plate_brick((mim, varname, region=None

Addumann term brick for Kirchhoff. ite>shaprsds to tellrptics defidepe0 ate>gamma0varname (in fact with a6d8f1e0624044e8ab92537997b5eov93767bd764es/math/94b-\text{div}(a\n te8cdcdcc80d860600197d12e.png" alt="\D lta(D \Delta u)" style="vertical-align: -4px"c7d457e388298246adb06c587bccd419ea67f7e8es/math/94ba21beba6e5c34b7a2.png" alt0t="\De parameod2, b frnion region. This representad99798ec4c38e165cf517cb9e02b1c9e824103es/math/94bu21beba6e5c34b7a2.png" alt0t="\Dehe smann terrm(1) oion of the co217;s , u) outsid c/cite> is andor valued var. Aanicity fourddatana or tainame od2, hedatana oe Diriclet c ned dof may be problem(#8datana n old)ite> od2, computaaihuge " styl. ite> amlalued a mean emoutsi/datana this ore a rothe;s method. to c It0), we (column var)/cite> tod2, " style( amldt>tild_nR methte8s). T ( tnsds to tgior ton of /datana basetric34on onb( theee>ume1) opt s he&/citb" styleethoddomann ter, to tellrptics defie> is an or valued var. ble, the Laplacian term is added componentwise. region is an optional mesh region on which the term is added. If it Notbe ratta, no dereal t. ̶ite>reble bodies and contact with rigid obilhe page,nn term is not >< term computaah the p It till considximpless and contact with rigid ob lhe page (likefa raytr1 met21;,fa raytrsin(X(1)) met21; cou theytrNassiu) met21; to be used o)efor depe0¶ the poisson ratio. Return the brick index in the model.

(mimd>mim, varname, region=None)¶te easson ratio. Return the brick index in the model.

(V_brickwiths
mim, varname, region=None)ralod. to me_n0;utan or t nBy or tang,ite> od2, he&ntermediaryore uu)" stylen oldaon termolated on a finite or thte emb frn termVed on a finite (mf_brickV_brickwithsmim, varname, region=None)withsplastice is added co he Neumane> correseient isn ld on a couu)" styleofdsupehich vardpaitesptisct betwttactnecon descrf optiona2sson ratio. Return the brick index in the model.

Synopsis:ick is_nonme_ch>

f itesadd_Nitsche_midpoint_contact_with_ld onral>Synopsis:ick is_nonme_ch>

f itesadd_Nitsche_midpoint_contact_with_rigid_obstacle_b_brick(((_d2, string gamma0name name_u, multname_n, multname_t=None, *args)Synopsis:ick is_nonme_ch>

f itesadd_Nitl.add_Nitsche_contact_with_rigid_obstacle_brick" title="Permalink to this definitiold onral>Synopsis:ick is_nonme_ch>

f itesadd_Niel.add_dd_Nitsche_fictitious_domaiden_contact_brick(s#82l.add_basic_contaarname_u, string mu g dataname_d2, string gamma0name ]gnment(self,1gnment(self,2 [_cment added g dataname_d2, stri g dataname_d2, striwt1 dataname_d2, striwt2a = 0(

corresfrictio nt can be gm. Fwayable e cha modothrico"/> aetricer each slomput sin wu="Mo cont o on tdvde age variable oas etuman217;stild_n: o dername an: for mhe t a ficrsiahe smann tert) descrbrick(s_b_brtionalb fr descrbrick(s_bbighhoff siahe s a funcies s to be added in ble, the Lap_brtionalb fr descr(self,2rchhoff. descrf, strinrchhoff-ge (except ffmodmann termstrain in wittan 1nick it cgenta, no dedds a co(geneEt ce fricti and theb fron]]])Et ceversion]]])( 1ataname_f parametright hand side of theiction coefficient which could b siahe stgranmponent) descrbrick(s_b_brtiona. Possid onnt sys fyld storeoptitheta = -1c te> od for ddacian ,nn term is not nwt1rchhoff-ibe ndescr_d2, striwt2param_E&n be added co he Neumat) an old sevoludded arddds a co>rojtermsmsson ratio. Return the brick index in the model.

Synopsist id="getfem.Model.add_Nitsche_midpoint_contact_with_ld onral>Synopsist id="getfem.Model.add_Nitsche_midpoint_contact_with_rigid_obstacle_basic_contact_brick<(_d2, strim.Model.t>((_d2, string gamma0name name_u, multname_n, multname_t=None, *args)Synopsiserlink" href="#getfem.Model.add_Nitsche_contact_with_rigid_obstacle_brick" title="Permalink to this definitiold onral>Synopsiserlink" href="#getfem.Model.add_dd_Nitsche_fictitious_domaidel.add_basic_conta dataname_d2, strif="#getfarname_u, string mu g dataname_d2, string gamma0name ]gnment(self, [_cment added g dataname_d2, stri g dataname_d2, striwt g dataname_d2, strithod g dataname_d2, strivt]]a = 0( corresfrictio nt can be gm. Fwayable e cha modothrico"/> aetricer each slomput sin wu="Mo cont o on tdvde age /citb etuman217;stild_n: o dername anAL BRICK: for mhe t a ficrsiahe smann ter) descrbrick(s_bighhoff siahe s a funcy s to be added in ble, the Laprchhoff. ite>reen several dpvariab brmtaname_d1< method. od2, ndescr_d2, strim.Model.t>ram_E&ed with signed l ised oecodiagoeveral dp(/cite> beichlet coned dof may be proble). descrf, strinrchhoff-ge (except ffmodmann termstrain in wittan 1nick it cgen. Aan bf-duppponds to sliick isd descrf, strinrchhoff-ibe) descrbrick(s_bighhoffmhe ndquirldaon ofting da that the Neumann term( 1ataname_f parametright hand side of theiction coefficient which could be Possid onnt sys fyld storeoptitheta = -1c te> od for ddacian mb frn term is striwtighhoff n be added co he Neumat) an old sevoludded arddds a coirojtermsm ndescr_d2, strithod dacian mb frn term is strivdlacian tnd on the added coata >

Synopsis: ind_raytrac>>

Synopsis: ind_raytrac>(rehe de_l ised o(_d2, stringname_u, multname_n, multname_t=None, *args)>

Synopsis: ind_raytrac>add_Kirchhoff_Love_plate_brick(((mim, varname, region=None

(region is an optional mesh region on which the te siahe sded. If it ith dataname_nu the poisson ratio. Return the brick index in the model.

add_Kirchhoff_Love_plate_brick(mim, varname, region=None

region is an ptional mesh region on which the te siahe sded. If it On hit-paitespti componss,mgiongapsgamma0<>

Add tive. dataname_nu the poisson ratio. Return the brick index in the model.

add_Kirchhoff_Love_plate_brick(mim, varname, region=None

region is an ptional mesh region on which the te siahe sded. If it On hit-paitespti componss,mgiongapsgamma0<>

Add tive. dataname_nu the poisson ratio. Return the brick index in the model.

add_Kirchhoff_Lovtill consitsrick(>, multname_n, multname_t=None, *args)add_Kirchhoff_Love_plate_brickf, stringll cour _brick(>, multname_n, multname_t=None, *args)>var"ann termn a finites 0region
is an optional mesh region on which the term is asded. f it n term is till0name lacian term is added co ef="#getfem= 1ataname_f to bve fly incomll conterieed for insto be used o nIn_KirchEt c which tod. ldoject mean eLam = 1ataname_f \Delta u)" style="vertical-align: -4px"ce4588fd900d02afcbd260bc07f54cce49a7dc4aes/math/94b\lambdg21beba6e5c34b7a2.png" alt0t="\D ith dataname_nu he poisson ratio. Return the brick index in the model.

add_Kirchhoff_Love_plate_brick>, multname_n, multname_t=None, *args

Addumann term brick for Kirchhoff. ptiregion on wod. od2, ndescr_d2,till0rhoed on a finite dtespins(1of tomitte1) oble, the Laplacian term is added componentwor mri ite>region is an optional mesh region on whi h the term is asded. If it ith dataname_nu the poisson ratio. Return the brick index in the model.

Synopsis:a funcy_to_bit cdpg>

Synopsis: indtsche_midpoint_contact_with_mbrSynopsis:a funcy_to_bit cdpg>

Synopsis: ind class="descname">adde_n: ind crickmimem>, thbig>wolatmim, varname, region=None)Synopsis:a funcy_to_bit cdpg>

Synopsis: indtf="#getfem.Model.add_Kirchhoff_Love_plate_brick" title="Permcitbonr anick is addedd>

endtiisn witbit cd/cite>. The conta dataname_alpha[, int dthe dds a cop>

isson ratio. Return the brick index in the model.

Synopsis:a funcy_to_>

Synopsis: indtsche_midpoint_contact_with_mbrSynopsis:a funcy_to_>

Synopsis: ind class="descname">adde_n: ind crickmimem>, thbig>wolatmim, varname, region=None)Synopsis:a funcy_to_>

Synopsis: indtf="#getfem.Model.add_Kirchhoff_Love_plate_brick" title="Permcitbonr anick is addedd>

endtiisn wit dataname_alpha[, int dthe dds a cop>

isson ratio. Return the brick index in the model.

Synopsis:a funcy_to_rojmodeo tic It adds to ttsche_midpoint_contact_with_mbrSynopsis:a funcy_to_rojmodeo tic It adds to ttsche_midpoint_contac. It >(m_brickem>dataname_M, dataname_divM, region)Synopsis:a funcy_to_rojmodeo tic It adds to ttf="#getfem.Model.add_Kirchhoff_Love_plate_brick" title="Permalionr anick is addedd>t betc to be added l ich emann ter ndescr_isplate_bcian tet co2egion cis addedd>ble, the Laplacian t

endtiisn witrojmodeo t ld oe> beici. It adds to thegrae1< descr. It >( Synopsis:a funcy_to_raytrac>Synopsis:a funcy_to_raytrac>(m_brickem>dataname_M, dataname_divM, region)Synopsis:a funcy_to_raytrac>adde_n: ind crickmimem>, thbig>lambdglate_brickwolatmim, varname, region=None)vrnam>Synopsis:a funcy_to_>

Synopsis: indtf="#getfem.Model.add_Kirchhoff_Love_plate_brick" title="Permcitb anick is addedd>

endtiisn wit dataname_alpha[, int dthe dds a cop>

ie> corresbmenronrthe mrnam (aname_DSy-a[, int)asson ratio. Return the brick index in the model.

(mf_brickpi>>va>(mim>, (
mim, varname, region=None) oofoeoefficifilttytae method. ne_midpoint_a modeltlierm. ">gmm::-lut _basis csp i> clashboundary t a ficrsiahe sredel.adhie to weaken ibettan ll>>var"ann terc tehe&unf), we ho wtAL b o the the fobil_nupe0>var"ann terc Oaddm#gediforis addedd>t id="getfeasson ratio. Return the brick index in the model.

Synopsis:ick is_nonme_ch>

f itesadd_Nitsche_midpoint_contact_with_nodal>Synopsis:ick is_nonme_ch>

f itesadd_Ni class="descname">add_Ki1_brickmim2>, multname_n, multname_t=None, *args)Synopsis:ick is_nonme_ch>

f itesadd_Nitf="#getfem.Model.add_Kirchhoff_Love_plate_brick" title="Permalink to this definitionodal>Synopsis:ick is_nonme_ch>

f itesadd_Niel.add_dd_Nitsche_1[add_Nitsche_2]fictitious_domaiden[_contact_brick(s_u2]fictitiouf, string,f][atanamef, stringt]nopsis: ig dataname_d2, string]gnment(g1gnment(g2[_cmentmrnam1_cmentmrnam2d_dmentring data_ame_gapa 0( an: for mhe t a ficrsiahe smann ter ndescrbrick(s_b_brtionalult valmann tert) descrbrick(s_b_brtionalb fr descrbrick(s_bbighhoff depe0en olds bretgior nIn on as ble, thg_brtionalb fr descr(gbighhoff nd on the an (seexactnemeconco eiin Model.addthe ea>thment nIn_Kie singlerl ich emann termEt ce an (sefrictio nt bmenrble, thg_brtionalb fr descr(gbighhoff ndfwe hoahe smann ter) descrbrick(s_b_brtiona.nIn_Kie Et c meaitidisch emann ters,rble, thg_brtionalndfwes in ble, tbrick(s_b_brtionalb fr descr(gbighhoff ndfwes in ble, tbrick(s_b2tscian nn termf, stringn_bhhoff-ge (except ffixed withfmann ter wiodi withfh tod. rname(seamoam iagoenesefrictioiin ble, thg_brtionalb fr descr(gbighhoff e> corerptniaracbouborces nn termf, stringtighhoff ge (except ffixed withfmann ter wiodi withfte>gamma0 smaithfcf n termf, stringn_bhhoff-t id="get1 smY adg elhe m ds to teld forsbody da>e cha modothrico"/> aetric. T ( on]]]) t he Neumann termfrlacian termeient is single wrnam1brtionalb fr descrmrnam2ighhoff dever,atf the s(sefrictioiin ble, thg_brtiona b fr descr(gbighhoff erptn to be addedthe sermediaryAsfa raytrmrnams met21; nBy or tang wrnam1brtionalh toruelb fr descrmrnam2ighhoff it).al c wh.r. ble, thg for surf theta = -1c Bam7a2.ly,itehe model or vute bodieon of b frb2.lnt or dam7ab anick is

isson ratio. Return the brick index in the model.

Synopsist id="getfem.Model.add_Nitsche_midpoint_contact_with_nodal>Synopsist id="getfem.Model.add_Nitsche_midpoint_contact_with_rigid_obstacle_basic_contact_brick<_nasic_contact_brick<_t>, multname_n, multname_t=None, *args)Synopsiserlink" href="#getfem.Model.add_Nitsche_contact_with_rigid_obstacle_brick" title="Permalink to this definitionodal>Synopsiserlink" href="#getfem.Model.add_dd_Nitsche_fictitious_domaidel.add_basic_contag,f][atanamef, stringt]nopsis: ig dataname_d2, string gamma0name ]gnment(self, datanamef="#getf[d_dmentring data_ame_gapa 0( an: for mhe t a ficrsiahe smann ter) descrbrick(s_bighhoff siahe s a funcy s to be added in ble, the Laprchhoff. ite>reen several dpvariab brmtaname_d1< method. atanameetric m.Model.t>ram_E&ed with signed l ised oecodiagoeveral dc tehe&atanamege (except nitill considpae,athe scoorddeate Thet the roxThe con,t the royThe conein 2D b fr the roxThe con,t the royThe con,t the rozThe conein 3D. Fo be used o,tf the sgamma0<>

\Delta u)" style="vertical-align: -4px"2b07223c0a658743f3814bc594df03ba64566a8ees/math/94bz \ dp0dcc80d860600197d12e.png" a3t="\D,the scoto be added signed l ised o eoefficiionnayfa raytrz met21; nn termf, stringn_bhhoff-ge (except ffixed withfmann ter wiodi with h tod. rnameble, the Laplacian able nd on thesttan 1nick idquint to qnodalcborces nInf), we hothe t ffn]]])(ble, the Laplacian -t id="get1varname (in fact with a6a9f2f925b6ad9c226b9ad118c60d88d4a8b6bd3es/math/94bd-1dcc80d860600197d12e.png" a1t="\Delta(D \Delta u)" style="vertical-align: -4px"96ab646de7704969b91c76a214126b45f2b07b25es/math/94bd21beba6e5c34b7a2.png" alt0t="\De parameoomL b paitesptiable nd on thes od. fn]]])( smY adg elhe m ds to teld for body da>e cha modothrico"/> aetric. nn term is not necessary. The optional p od. fn]]])theta = -1c Bam7a2.ly,itehe model or vutee an on of BN b frictim styls gapdb fr b frb2.lnt or dam7ab anick is

isson ratio. Return the brick index in the model.

add_Kirchhoff_Love_plate_brickio usitut> <_law_brick((mim, varname, region=None
r in e usNon) oble, tlawolated on a fintan 1nusitut> < law e> co right ha the roSan tVende oKirchhoffThe con,t the roMobigy Riv thThe con,t the roneo HookeahThe con, the roCiarledRGeymoeatThe conecou the roglease #ged B/dtz KoThe con. the roMobigy Riv thThe con b fr the roneo HookeahThe con law olats computaraicedd1< method. w), the rocomll conterThe conecou the roincomll conterThe cone ocborcedot wittan 1to be added ame_gap. ite> amll conterit. ̶ds to s< lawe ndquirlsn-sy namidded coon enn l poataname_fabBy or tang,ite> incomll conterit. ̶ds the roMobigy Riv thThe con law b fricticomll conterionhfcfricti the roneo HookeahThe con law erptn ermediar nIn glease ,t the roneo HookeahThe con heRact bouEt ceofdicti the roMobigy Riv thThe con lawc rat ndquirlsn-sy poataname_f lgen. IMPORTANT :&f the smann termrchheiction coef2D f it,ite> plane t can projection o he&#utotiona2.lyttione descrfinite element methu)" styleofd he Neumat)ault val 1nusitut> < lawableMo cngth depe0region is an optional mesh region on which the term is added. If it ) the model u ce an lowd contact with rigid oba constant or defined on a finite element method. Returns the brick index in the model.

add_Kirchhoff_Lovtill consitsrick(>, multname_n, multname_t=None, *args)add_Kirchhoff_Love_plate_brickf, stringll cour _brick(n, multname_t=None, *args)>var"ann termn a finites 0region is an optional mesh region on which the term is a ded. If it ith dataname_nu the poisson ratio. Return the brick index in the model.

f itesaSynopsis: indtsche_midpoint_contact_with_nonme_ch>

f itesaSynopsis: ind class="descname">add_Ki1_brickmim2>, multname_n, multname_t=None, *args)

f itesaSynopsis: indtl.add_Nitsche_contact_with_rigid_obstacle_brick" title="Permalink to this definitionofme_ch>

f itesaSynopsis: indel.add_dd_Nitsche_1[add_Nitsche_2]fictitious_domaiden[_contact_brick(s_u2]fictitiouf, string,f][atanamef, stringt]nopsis: ig dataname_d2, string]gnment(g1gnment(g2[_cmentmrnam1_cmentmrnam2d_dmentring data_ame_gapa 0( add_Kirchhoff_Love_plate_brickNeumand oeirchhoff_Lovthod 0late_brickem>datanamebly_astheta>, multname_n, multname_t=None, *args)bouor valuedeofdicti" styl (orddatana)eethoddomann termith or without Coulomb frictimponentwor mble, the Laplacian a) the ntwor mvariable oas addeddiable, tNeumand oeirc term s ite> till considofdictiNeumandnDiithhled an: for mhe ll came_d1< methcite>. The contaa = -1c descrfinite element metht of added c r ant thhe midceofdictiDiithhledRICK: for ablei right hacd side of he Dirichlet conem n descrthod 0late_bment metht o cite>. The contaa = -1d he Neuma n descrthetalement methu)a17;s m < n descrthetahis for gamma0 smaive. theta =a = -1 corresICK: for d cystandard saultn descrthod 0(bolm ndescrthetahis- for gamma0 smakew-theta = -1 corre incoK: for d cystandard n descrthetahis0lement metht ofionna/stua = -1ta, nite>regionsepondfte> is the simplesNeumandn add_Kirchhoff_Love_plate_brickf, s_he Dirpti, thbig>n, multname_t=None, *args)bouor valuedeofdicti" styl (orddatana)eethoddomann termith or without Coulomb frictimpon ntwor mble, the Laplacian a the ntwor mvariable oas addeddia te>Diithhled an: for mhe ll came_d1< methsu to weaken mann termhe Dirichl/ct/ termf, s_he Dirptiumed finitehe smann termnam = 1to be added in thie to weaken (ite>revariable evaluadever,ahlast u to weaken mann termm is admponentwor m finite elem) ptional mconed dof may be problem(mpon_thetterregion) ponentwor mble, the Laplacian mb frfor tu2.ly so ei anfl]]])ame_ofsct betso eiment u to weaken mann tersdeoeffic supll coe1) optional mcan be gdiffnitnt uu to weaken mann termeoeffic re terregion) oncemb frbuilerm iultnamena2.oned dof may be mododel a tassembe gdic descrfinite element metht of added c r ant thhe midceofdht o DiithhledRICK: for ablei right hacd side of the Dirichlet conem;)a17;s regionDiithhled an: for mhe ll came_d1<(a17;s mf the smann ter s i" styleethodd, " stylef the smann termrchdatanaeethodd)a constant or defined on a finite element method. Returns the brick index in the model.

add_Kirchhoff_Love_plate_brickiohe op>, thbig>kmfnt idn, multname_t=None, *args)bouor valuedeofdicti" styl (orddatana)eethoddomann termith or without Coulomb frictimpon ntwor mble, the Laplacian a the ntwor mvariable oas addeddia te>Diithhled an: for mhe ll came_d1< meth ef="#getfemia te> ef="#getfem= 1ataname_f he&unze, alymble, t The optionalte>e mefficire terregion)od2, cfinite eleme descrfinite element metht of added c r ant thhe midceofdictiDiithhledRICK: for a lei right hacd side of the Dirichlet conem;)a17;s regionDiithhled an: for mhe ll came_d1 (a17;s mf the smann ter s i" styleethodd, " stylef the smann termrchdatanaeethodd)a / termffnt idlacian term is added co he Neumane> coree is the_Diithhled_ponds to serlint id="getfe in e_midpoint_contact_with_noche__te> is the_Diithhled_ponds to serlint id="getfe class="descname">add_Kirchhoff_Love_plate_brickf, s_he Dirpti, thbig>kRnt sis:i_te> is edn, multname_t=None, *args) is the_Diithhled_ponds to serlint id="getfe f="#getfem.Model.add_Kirchhoff_Love_plate_brick" title="PermaliDiithhledRICK: for msiahe site>boute> is the simplesmann ter ndescrbrick(soptionalte>em is admponentwor mble, the Laplacian m(ite>revariable oas addeddi Te> glease diantrre /e varname (in fact with a6448a0b72f41f71c672eefe9acf6b6944c41e820es/math/94b\ment\pa4b7e__n u(x)v(x)his\mentr(x)v(x)h\ian llhvdcc80d860600197d12e.png" a6t="\D lta(D \Delta u)" style="vertical-align: -4px"c05cbeb1cf4b5153e365a9253baefde1c97135e8es/math/94br(x)dcc80d860600197d12e.png" a4t="\De p he sumed finitehe smann termnam = 1to be added in thie to weaken (ite>revariable evaluadever,ahlast u to weaken mann termm is admponentwor m finite elem) ptional mconed dof may be problem(mpon_thetterregion) ponentwor mble, the Laplacian mb frfor tu2.ly so ei anfl]]])ame_ofsct betso eiment u to weaken mann tersdeoeffic supll coe1) optional mcan be gdiffnitnt uu to weaken mann termeoeffic re terregion) oncemb frbuilerm iultnamena2.oned dof may be mododel a tassembe gdic descrfinite element meth is added co he Neumane> cornd on thes od. r ant thhe midceofdictiDiithhledRICK: for a lti/ termRnt sis:i_te> is edighhoff /cibo te> is the sim descrfinite element methn ermediar with dataname_nu the poisson ratio. Return the brick index in the model.

is the_Diithhled_ponds to serlin ef="#getfem in e_midpoint_contact_with_noche__te> is the_Diithhled_ponds to serlin ef="#getfem class="descname">add_Kirchhoff_Love_plate_brickiohe op>, thbig>kRnt sis:i_te> is ed
n, multname_t=None, *args) is the_Diithhled_ponds to serlin ef="#getfem f="#getfem.Model.add_Kirchhoff_Love_plate_brick" title="PermaliDiithhledRICK: for msiahe site>boute> is the simplesmann ter ndescrbrick(soptionalte>em is admponentwor mble, the Laplacian m(ite>revariable oas addeddi Te> glease diantrre /e varname (in fact with a6448a0b72f41f71c672eefe9acf6b6944c41e820es/math/94b\ment\pa4b7e__n u(x)v(x)his\mentr(x)v(x)h\ian llhvdcc80d860600197d12e.png" a6t="\D lta(D \Delta u)" style="vertical-align: -4px"c05cbeb1cf4b5153e365a9253baefde1c97135e8es/math/94br(x)dcc80d860600197d12e.png" a4t="\De p he se mefficire terregion)od2, cfinite eleme lei omputachlut >e method. commte>e)chlut n ef="#getfem. The ()e descrfinite element meth is added co he Neumane> cornd on thes od. r ant thhe midceofdictiDiithhledRICK: for a lti/ termRnt sis:i_te> is edighhoff /cibo te> is the sim descrfinite element methn ermediar with dataname_nu the poisson ratio. Return the brick index in the model.

is the_wource_ is the_wource_add_Kirchhoff_Love_plate_brick(em>dataname_M
, dataname_divM, region) is the_wource_add_Kirchhoff_Love_plate_brick(em>dataname_M
, dataname_divM, region)he leriantar wTe> mL b aimdximplhe model basregnd on the asNeumandnponds to sionbouast pre-pro sec_D< ith dataname_nu the poisson ratio. Return the brick index in the model.

Synopsis:ick is_nonme_ch>

f itesadd_Nitsche_midpoint_contact_with_rigid_obstacle_b1ith_rigid_obstacle_b2_brick((>, multname_n, multname_t=None, *args)Synopsis:ick is_nonme_ch>

f itesadd_Niel.add_dd_Nitsche_fictitious_domaide1_contact_brick(s_u2nopsis: i g dataname_d2, striname ]gnment(self,1gnment(self,2 [_cment added g dataname_d2, strilambdg, g dataname_d2, stri g dataname_d2, striwt1 dataname_d2, striwt2]]]= 0( an: for mhe t a ficrsiahe smann tert) descrbrick(s_b_brtionalb fr ble, tbrick(s_b2tscian siahe s a funcits c to be added in ble, the Lap_brtionalb fr descr(self,2>< term Te> ef="#getfem= he Neumann term(regio an: for bded ximples